

Software Abstractions for Extreme-Scale
Scalability of Computational Frameworks

Martin Berzins

DOE ASCI (97-10), NSF , DOE NETL+NNSA ARL
NSF , INCITE, XSEDE

www.uintah.utah.edu

1. Background, motivation, Directed Acyclic Graph software
2. A DAG Example the Uintah Software
3. Engineering for Scalability with DAGs
4. Conclusions DAG Software Hype?

Here?

Or here?

BACKGROUND
MOTIVATION DAGs, SOFTWARE

* Now at Google

Software team: DSL team lead
 Qingyu Meng*, John Schmidt, Alan Humphrey, Justin Luitjens**, James Sutherland

Extreme Scale Research and teams in Utah

Energetic Materials: Chuck Wight, Jacqueline Beckvermit, Joseph Peterson,
 Todd Harman, Qingyu Meng NSF PetaApps 2009-2014 $1M, P.I. MB

PSAAP Clean Coal Boilers: Phil Smith (P.I.), Jeremy Thornock James Sutherland
etc Alan Humphrey John Schmidt DOE NNSA 2013-2018 $16M (MB Cs lead)

Electronic Materials by Design: MB (PI) Dmitry Bedrov, Mike Kirby, Justin
Hooper, Alan Humphrey Chris Gritton, + ARL TEAM 2011-2016 $12M

** Now at NVIDIA

Harrod SC12: “today’s bulk synchronous (BSP),
distributed memory, execution model is
approaching an efficiency, scalability, and power
wall.”

Sarkar et al. “Exascale programming will require
prioritization of critical-path and non-critical path
tasks, adaptive directed acyclic graph scheduling of
critical-path tasks, and adaptive rebalancing of all
tasks ...”
“ DAG Task-based programming has always been a
bad idea. It was a bad idea when it was introduced
and it is a bad idea now “ Parallel Processing Award
Winner

Much architectural uncertainty, many storage and
power issues. Adaptive portable software needed

Power needs force
use of accelerators

The Exascale challenge for Future Software?
Compute

Communicate

Compute

Some Historical Background
• Vivek Sarkar’s thesis (1989)

• Graphical rep. for parallel programs
• Cost model
• Compile time cost assignment
• Macro-data flow for execution
• Compile time schedule
• Prototype implementation 20 processors

• Charm++ Sanjay Kale et al. 1990s onward
• Uintah Steve Parker 1998 onward

Present Day
Much work on task graphs –
 e.g. O. Sinnen “Task Scheduling for Parallel Systems”

Task Graph Based Languages/Frameworks
1:
1

1:
2

1:
3

1:
4

2:
2

2:
3

2:
4

2:
2

Kale (1990) Charm++:
Object-based Virtualization

Plasma (Dongarra):
DAG based
Parallel linear
algebra software

Uintah Taskgraph
based PDE Solver
(Parker 1998)

StarPU
Task Graph
Runtime

Sterling et al. Express Project - faster?

Why does Dynamic Execution of
Directed Acyclic Graphs Work Well?

• Eliminate spurious
synchronizations points

• Have multiple task-graphs
per multicore (+ gpu) node
– provides excess
parallelism - slackness

• Overlap communication
with computation by
executing tasks as they
become available – avoid
waiting (use out-of order
execution).

• Load balance complex
workloads by having a
sufficiently rich mix of
tasks per multicore node
that load balancing is done
per node

Parallel Objects,
Adaptive Runtime System

Libraries and Tools

APPLICATIONS CHARM++ [SOURCE: KALE]

Crack Propagation

Space-time meshes

Computational
Cosmology

Rocket Simulation

Protein Folding

Dendritic Growth

Quantum Chemistry
LeanCP

Develop abstractions in context of full-scale applications

NAMD: Molecular Dynamics

STM virus simulation

UINTAH FRAMEWORK

Uintah(X) Architecture Decomposition

 Application Specification via
ICE MPM ARCHES or
NEBO/WASATCH DSL

Abstract task-graph program

that

Is compiled for

Executes on: Runtime

System with: asynchronous out-
of-order execution, work
stealing, Overlap communication
& computation.Tasks running on
cores and accelerators

Scalable I/O via Visus PIDX

Simulation
Controller

Scheduler

Load
Balancer Runtime System

ARCHES

NEBO
WASATCH

PIDX VisIT

MPM
ICE

 UQ DRIVERS

CPU GPU Xeon Phi

Some components have not
changed as we have gone
from 600 to 600K cores

ICE is a cell-centered finite volume
method for Navier Stokes equations

ICE Structured Grid Variable (for Flows) are Cell
Centered Nodes, Face Centered Nodes.
Unstructured Points (for Solids) are MPM
Particles

Uintah Patch, Variables and AMR Outline

ARCHES is a combustion code using several
different radiation models and linear solvers

Uintah:MD based on Lucretius is a new molecular dynamics component

• Structured Grid + Unstructured
Points

• Patch-based Domain
Decomposition

• Regular Local Adaptive Mesh
Refinement

• Dynamic Load Balancing
• Profiling + Forecasting Model
• Parallel Space Filling Curves

• Works on MPI and/or thread level

Burgers Example I <Grid>
 <Level>
 <Box label = "1">
 <lower> [0,0,0] </lower>
 <upper> [1.0,1.0,1.0] </upper>
 <resolution> [50,50,50] </resolution>
 <patches> [2,2,2] </patches>
 <extraCells> [1,1,1] </extraCells>
 </Box>
 </Level>
 </Grid>

void Burger::scheduleTimeAdvance(const LevelP& level,
 SchedulerP& sched)
{
 ..
 task->requires(Task::OldDW, u_label, Ghost::AroundNodes, 1);
 task->requires(Task::OldDW, sharedState_->get_delt_label());

 task->computes(u_label);
 sched->addTask(task, level->eachPatch(), sharedState_->allMaterials());
}

25 cubed patches
8 patches
One level of halos

Get old solution from
old data warehouse
One level of halos
Compute new solution

Burgers Equation code
void Burger::timeAdvance(const ProcessorGroup*, const PatchSubset* patches,
 const MaterialSubset* matls, DataWarehouse* old_dw, DataWarehouse* new_dw)
 //Loop for all patches on this processor
 { for(int p=0;p<patches->size();p++){
//Get data from data warehouse including 1 layer of "ghost" nodes from

surrounding patches
 old_dw->get(u, lb_->u, matl, patch, Ghost::AroundNodes, 1);

 // dt, dx Time and space increments
 Vector dx = patch->getLevel()->dCell();
 old_dw->get(dt, sharedState_->get_delt_label());

 // allocate memory for results new_u
 new_dw->allocateAndPut(new_u, lb_->u, matl, patch);

 // define iterator range l and h lots missing here and Iterate through all the

nodes
 for(NodeIterator iter(l, h);!iter.done(); iter++){
 IntVector n = *iter;
 double dudx = (u[n+IntVector(1,0,0)] - u[n-IntVector(1,0,0)]) /(2.0 * dx.x());
 double du = - u[n] * dt * (dudx);
 new_u[n]= u[n] + du;
 }

0t xU UU�

Uintah Directed Acyclic (Task) Graph-
Based Computational Framework

Each task defines its computation with
required inputs and outputs

Uintah uses this information to create a task

graph of computation (nodes) +
communication (along edges)

Tasks do not explicitly define communications

but only what inputs they need from a
data warehouse and which tasks need to
execute before each other.

Communication is overlapped with
computation

Taskgraph is executed adaptively and

sometimes out of order, inputs to tasks
are saved

Tasks get data from OLD Data Warehouse and put results into NEW Data Warehouse

Runtime System

The nodal task soup

Task Graph Structure on a Multicore Node with multiple patches

This is not a single graph. Multiscale and
Multi-Physics merely add flavor to the “soup”.

halos halos external
halos

external
halos

The DAG Approach is
not a silver bullet

Uintah Phase 1 1998-2005 – overlap
communications with computation. Static
task graph execution standard data
structures one MPI process per core. No
AMR.

Uintah Phase 2 2005-2010 improved fast
data structures, load balancer. AMR to 12k
cores, then 100K cores using new approach
before data structures cause problems.
Out of order and dynamic task execution.

Uintah Phase 3 2010- Hybrid model.
Theaded runtine system on node. One MPI
process and one data warehouse per node.
Multiple cores and GPUs grab tasks as
needed. Fast scalable use of hypre for
linear equations.

OLD CSAFE
RESULTS

OLD
CSAFE
RESULTS

UINTAH SCALABILITY

Explosives Problem 1 Fluid-Structure Benchmark
Example: AMR MPMICE

A PBX explosive flow quickly pushing a piece of its metal container

Flow velocity and particle volume Computational grids and particles

Grid Variables: Fixed number per patch, relative easy to balance
Particle Variables: Variable number per patch, hard to load balance

Thread/MPI Scheduler (De-centralized)

• One MPI Process per Multicore node
• All threads directly pull tasks from task queues execute tasks and

process MPI sends/receives
• Tasks for one patch may run on different cores
• One data warehouse and task queue per multicore node
• Lock-free data warehouse enables all cores to access memory

quickly

Core runs tasks and checks
queues

N
etw

ork

Data
Warehouse

(variables
directory)

PUT

GET

Core runs tasks and checks
queues

Core runs tasks and checks
queues

completed task

Task Queues
New tasks

completed task

Threads

Shared
Data

Ready task

sends

receives

Task
Graph

PUT

GET

MPI

Select Task &
Post MPI Receives

Select Task &
Execute Task

Check Records &
Find Ready Tasks

Comm
Records

Internal
Task

Queue

External
Task

Queue

Task
Graph

Post Task
MPI Sends

N
etw

ork

Data

Warehouse
(one per-

node)

put

valid

send

get

recv

MPI_
ISend

MPI_
IRecv

MPI_
Test

Uintah Runtime System

Thread 1
2

3

Raw Data: 49152 doubles 31360 doubles
MPI buffer: 28416 doubles 10624 doubles
Total: 75K doubles 40K doubles

MPI: Thread/MPI:

(example on Kraken, 12 cores/node, 98K core 11% of memory needed

New Hybrid Model Memory Savings: Ghost Cells

Local Patch

Ghost Cells

Task prioritization algorithms

TASK
POOL

Algorithm Random FCFS PatchOrder MostMsg.
Queue Length 3.11 3.16 4.05 4.29
Wait Time 18.9 18.0 7.0 2.6
Overall Time 315.35 308.73 187.19 139.39

Task pool
to be executed

MPI sends
Sub-domain

Prioritize tasks with external communications over purely internal ones

Executing the task
pool in different
ways leads to
different
communications
patterns

Granularity Effect
• Decrease patch size

• (+) Increase queue length
• (+) More overlap, lower

task wait time
• (+) More patches, better

load balance
• (-) More MPI messages
• (-) More regrid overheads

• Other Factors
• Problem size
• Implied task level

parallelism
• Interconnection

bandwidth and legacy
• CPU cache size

• Solution- Self Tuning?

Nodal Performance and Global ScalbilityScalability
on Titan

One flow with particles moving
3-level AMR MPM ICE 70% efficiency
At 256K cores vs 16K cores

OLD Scaling
Breakdown

Scaling fine on Jaguar XK6
Breakdown on Jaguar XK7 with
more faster cores and a faster
network – needed a rewrite of
Data Warehouse to allow cores
faster access

Lock-Free Data Structures

Using atomic instruction set
Variable reference counting

fetch_and_add, fetch_and_sub
compare_and_swap
both read and write simultaneously

Data warehouse
Redesigned variable container
Update: compare_and_swap
Reduce: test_and_set

Global scalability depends on the details of nodal run-time system.
Change from Jaguar to Titan – more faster cores and faster communications
broke our Runtime System which worked fine with locks previously

Scalability is at least partially achieved by not
executing tasks in order e.g. AMR fluid-structure
interaction

Straight line represents given order of tasks Green X shows
when a task is actually executed.
Above the line means late execution while below the line means
early execution took place. More “late” tasks than “early” ones
as e.g.
TASKS: 1 2 3 4 5 1 4 2 3 5

Early Late execution

Weak Scaling AMR+MPM ICE
M = Mira, T=Titan, S=Stampede

/Proc

Only 2
patches
per core
Includes
packing
unpacking
and data
warehouse

Only 8
interior
patches
from 32

Deflagration wave moves at
~400m/s not all explosive
consumed. Detonation wave
moves 8500m/s all explosive
consumed.

NSF funded modeling of
Spanish Fork Accident 8/10/05
Speeding truck with 8000
explosive boosters each
with 2.5-5.5 lbs of explosive
overturned and caught fire
Experimental evidence for
a transition from
deflagration to detonation?

Spanish Fork
Accident

500K mesh patches
1.3 Billion mesh cells
 7.8 Billion particles

At every stage when we move
to the next generation of problems
Some of the algorithms and data
structures need to be replaced .

Scalability at one level is no certain
Indicator fro problems or machines
An order of magnitude larger

MPM AMR ICE
Strong Scaling

*

Complex fluid-structure interaction problem
with adaptive mesh refinement, see SC13/14 paper
NSF funding.

Resolution B
29 Billion particles
4 Billion mesh cells
1.2 Million mesh
patches

Mira DOE BG/Q
768K cores
Blue Waters Cray
XE6/XK7 700K+
cores

Summary of Scalability Improvements

(i) Move to a one MPI process per multicore node
reduces memory to less than 10% of previous for
100K+ cores

(ii) Use optimal size patches to balance overhead and
granularity 16x16x 16 to 30x30x30.

(iii) Use only one data warehouse but allow all cores
fast access to it, through the use of atomic
operations.

(iv) Prioritize tasks with the most external
communications

(v) Use out-of-order execution when possible

An Exascale Design Problem - Alstom Clean Coal Boilers

For 350MWe boiler problem. LES resolution
needed: 1mm per side for each computational volume = 9x 10ଵଶ cells
This is one thousand times larger than the largest problems we solve
today.

Temperature field

Prof. Phil Smith Dr Jeremy Thornock ICSE

Existing Simulations of Boilers using ARCHES in Uintah
(i) Traditional Lagrangian/RANS approaches do not address well particle effects
(ii) LES has potential to predict oxy---coal flames and to be an important design tool

(iii) LES is “like DNS” for coal, but 1mm mesh needed to capture phenomena

 Structured, finite-volume method, Mass, momentum, energy with radiation

 Higher-order temporal/spatial numerics, LES closure, Tabulated chemistry

 PDF mixing models, DQMOM, modeling particles

Mesh spacing filter

Uncertainty Quantified
Runs on a Small Prototype
Boiler

Red is experiment
Blue is simulation
Green is consistent

Absence of scales for commercial
reasons

[Source: Jeremy Thornock]

Each Mira Run is scaled wrt the Titan Run at 256 cores
Note these times are not the same for different patch sizes.

2.2 Trillion
DOF

Weak Scalability of Hypre Code

Linear Solves arises from Low Mach Number Navier –Stokes Equations

Use Hypre Solver from LLNL
Preconditioned Conjugate Gradients
on regular mesh patches used

Multi-grid pre-conditioner used
Careful adaptive strategies needed
to get scalability

One radiation solve
every 10 timesteps

NEBO/Wasatch Example

1
(,)

n
h ij i i
J T Y T h JO

 � � �¦

Energy equation
.() . 0h

e
eu J terms

t
U Uw

�� �� �
w

Enthalpy diffusive flux

1

(,) (,)
ns

T
i ij j j i j

j

J D T Y Y D T Y T

 � � � �¦

Dependency
specification

Execution
order

Express complex pde functions as
DAG - automatically construct
algorithms from expressions

Define field operations needed to
execute tasks (fine grained vector
parallelism on the mesh)

User writes only field operations code .
Supports field & stencil operations
directly - no more loops!

Strongly typed fields ensure valid
operations at compile time. Allows a
variety of implementations to be tried
without modifying application code.

Scalability on a node - use Uintah
infrastructure to get scalability across
whole system

[Sutherland Earl Might]

Running Task

N
etw

ork

Host
Data

Warehouse

(variables
directory)

PUT

GET

Running Task

Running Task
completed task

Task Queues
New tasks

completed task Host
Threads

Host
Memory

Ready task

sends

receives

Task
Graph

PUT

GET

Unified Heterogeneous Scheduler (GPU or Phi symmetric)

Running Task D
evice

N
etw

ork

Device
Data

Warehouse

(variables
directory)

PUT

GET

Running Task

Running Task
completed task

Task Queues
New tasks

completed task

Device
Threads

Device
Memory

Ready task

receives

Task
Graph

PUT

GET

P
C

I-E

• Use CUDA Asynchronous
API

• Automatically generate
CUDA streams for task
dependencies

• Concurrently execute kernels
and memory copies

• Preload data before task
kernel executes

• Multi-GPU support

hostComputes

hostRequires

existing host
memory

devComputes

devRequires

Pin this memory with
CudaHostRegister()

Page locked buffer

cudaMemcpyAsync(H2D)

computation

cudaMemcpyAsync(D2H)
Free pinned host

memory

Result back on host

Call-back executed here
(kernel run)

Automatic D2H copy here

GPU Task and Data
Management

Framework Manages Data Movement
Host Å Æ Device

Data Transfer Kernel Execution
Kernel Execution

Data Transfer

Normal Page-locked Memory

Wasatch – Nebo Recent Milestones
• Wasatch is solving (nonreacting miniboiler~3-4x

speedup over the non-DSL approach.
• New Nebo backend for CPU resultied in 20-30%

speedup in the entire Wasatch code base.
• Much of the Wasatch code base is GPU-ready
• Arches plus SpatialOps & Nebo EDSL being scoped.

Good GPU scaling with (>32^3 per patch).
Loop fusion (heavy GPU kernels) needed e.g “coupled
source & diffusion”

[James Sutherland]

DESIGNING FOR EXASCALE
Clear trend towards accelerators e.g. GPU but also Intel MIC – new NSF
“Stampede” 10-. 15PF Balance factor = flops/bandwidth - high

GPU performance “ok” for stencil-based codes ,2x over multicore cpu
estimated and achieved for ICE . Similar results by others.
Network and memory performance more slowly growing than cpu/gpu
performance. GPU perf.of ray-tracing radiation method is 100x cpu

Overlapping and hiding Communications essential

NVIDIA AMGX Linear Solvers on GPUs
Fast, scalable iterative gpu linear solvers for packages e.g.,
Flexible toolkit provides GPU accelerated Ax = b solver
Simple API for multiple apps domains.
Multiple GPUs (maybe thousands) with scaling

Key Features
Ruge-Steuben algebraic MG
Krylov methods: CG,
GMRES, BiCGStab,
Smoothers and Solvers:
Block- Jacobi, Gauss-Seidel,
incomplete LU,

Flexible composition system
MPI support OpenMP
support, Flexible and high
level C API,

Free for non-commercial use
Utah access via Utah CUDA COE.

DESIGNING FOR EXASCALE
Clear trend towards accelerators e.g. GPU but also Intel MIC – NSF
“Stampede” Balance factor = flops/bandwidth – high.PORTABILITY IS
THE KEY ISSUE:NEW CODE - use Wasatch to generate code for GPUs
and MICs .How do we handle the challenge of existing code?

� Standard C++, Not a language extension

� In spirit of TBB, Thrust & CUSP, C++AMP, LLNL’s RAJA, ...

� Not a language extension like OpenMP, OpenACC, OpenCL, CUDA, ...

� Uses C++ template meta-programming

� Multidimensional Arrays, with a twist
� Layout mapping: multi-index (i,j,k,...) l memory location
¾Choose layout to satisfy device-specific memory access pattern

� Layout changes are invisible to the user code

Kokkos: A Layered Collection of Libraries

[source Carter Edwards and Dan Sunderland]

Evaluate Performance Impact of Array Layout

[Edwards and Sunderland]

44

z Molecular dynamics computational kernel in miniMD
z Simple Lennard Jones force model:
z Atom neighbor list to avoid N2 computations

z Test Problem

z 864k atoms, ~77 neighbors

z 2D neighbor array

z Different layouts CPU vs GPU

z Random read ‘pos’ through

GPU texture cache

z Large performance loss
with wrong array layout

Fi= �
j , rij< r cut

6 İ[(Ȣrij)
7

í 2(Ȣr ij)
13]

pos_i = pos(i);
for(jj = 0; jj < num_neighbors(i); jj++) {
 j = neighbors(i,jj);
 r_ij = pos_i – pos(j); //random read 3 floats for pos
 if (|r_ij| < r_cut) f_i += 6*e*((s/r_ij)^7 – 2*(s/r_ij)^13)
}
f(i) = f_i;

0

50

100

150

200

Xeon Xeon Phi K20x

G
F

lo
p

/
s

correct layout

(with texture)

correct layout

(without texture)

wrong layout

(with texture)

Proposed Uintah(X) Architecture Decomposition

Simulation
Controller

Scheduler

Load
Balancer Runtime System

ARCHES

NEBO
WASATCH

PIDX VisIT

MPM
ICE

 UQ DRIVERS

CPU GPU Xeon Phi

Kokkos Intermediate Layer

Applications code

Abstract C++ Task Graph Form

Compilation into C++ Cuda etc

Adaptive Execution of tasks

On specific processors

Resilience

Need interfaces at system level to help us consider:
Core failure – reroute tasks
Comms failure – reroute message
Node failure – need to replicate patches use an AMR
type approach in which a coarse patch is on another
node. In 3D has 12.5% overhead – suggested by
Qingyu Meng Mike Heroux and others.
Will explore this from fall 2014 onwards. Just how
bad is the problem?

Summary

• DAG abstraction important for achieving scaling
• Layered approach very important for not needing to change

applications code
• Scalability still requires much engineering of the runtime

system.
• General approach very powerful indeed.
• Obvious applicability to new architectures
• DSL approach very important very future
• Scalability still a challenge even with DAG approach – which

does work amazingly well, e.g. for fluid-structure calculations
• GPU and MIC development ongoing
• The approach used here shows promise for very large core

and GPU counts but using these architectures is an exciting
challenge

• Complex problems require
differing scales
Example: Battery Cathode
(Atomistic/CG + MPM)
Mesoscopic (or larger) cathode
particle mechanical response via
MPM.Microscopic
particle/electrolyte interactions at
Atomistic/CG scale

 Computational Challenges
(i) Marrying simulation techniques across multiple
orders of magnitudes.
(ii) Quantifying Uncertainty across multiple scales

Example of AMR MPM
Coupling with MD
[Nitin Daphalapurkar]

ARL: Multi-scale Modeling of Electronic Materials
Utah, Boston, RPI, Chicago, Harvard, Brown, Penn State

Vision: Longer lasting
batteries and fuel
Cells for extreme
environments

New generation of
LEDs and night-vision

New materials

Weak and Strong Scalability:
Problem size n on p cores takes time T(n,p)

Strong Scalability (,) (,1) /T n p T n p

Weak Scalability

Solve a problem that is p times as large in the same time on
p cores

(,) (,1)T np p T n

Both weak and strong scalability only if linear complexity
[Tirado + Martin] 1998 (,1)T n nD

Theorem

Try to solve the same problem p times more quickly on p cores

Today’s machines
used in this talk

SYSTEM Vendor/
Type

CPUs and
Accelerators

Cores Mem/
Node

Inter-
conn.

Peak
Pflop

TITAN Cray
XK7

AMD Opteron 2.6Ghz
NVIDIA KEPLER

299008
18K x 2496

32GB Cray
Gemini

27

Stampede Dell Zeus Intel Sandybridge
2,7GHz
Intel Xeon Phi

102400
390400

32GB Infinib-
and

4

Mira IBM Blue
Gene Q

Power PC A2 1.6Ghz 786432 16GB 5D
Torus

10

NSFs Kraken and DOEs Titan, DoD machines and local HP
machines are our workhorses.
THESE MACHINES WILL SEEM “SMALL” IN 2025 and will
the equivalent of large regional or lab machines but are
ranked 2,7 and 4 in the world today

GPU Task Management
With Uintah’s knowledge of the task-graph, task data can
be automatically transferred asynchronously to the device
before a GPU task executes

 All device memory allocations
and asynchronous transfers
handled automatically

 Can handle multiple devices on-
node

 All device data is made available
to component code via convenient
interface

hostComputes

hostRequires

existing host
memory

devComputes

devRequires

Pin this memory with
cudaHostRegister()

Page locked buffer

cudaMemcpyAsync(H2D)

computation

cudaMemcpyAsync(D2H)

Free pinned
host memory

Result back on host

Call-back executed here
(kernel run)

Component requests
D2H copy here

1

2

3

5

6

4

Memory Savings
• Global Meta-data copies

• 60 bytes or 7.5 doubles per patch
• Each copy per core vs Each copy per node

• MPI library buffer overhead
• Results:

Ratio = Thread MPI memory usage
MPI memory usage × 100%

Cores 3072 6144 12288 24576 49152 98304

Percent 61% 47% 36% 27% 18% 11%

AMRICE: Simulation of the transport of two fluids with a prescribed initial
velocity of Mach two: 435 million cells, strong scaling runs on Kraken

Uintah Applications

Angiogenesis

Micropin Flow

Shaped Charges

Sandstone
Compaction

Foam
Compaction

Industrial
Flares

Explosions

Carbon capture and cleanup

Explosions

	 Software Abstractions for Extreme-Scale Scalability of Computational Frameworks
	Slide Number 2
	
	The Exascale challenge for Future Software?
	Some Historical Background
	Task Graph Based Languages/Frameworks
	Why does Dynamic Execution of Directed Acyclic Graphs Work Well?
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Uintah Patch, Variables and AMR Outline
	Burgers Example I
	Burgers Equation code
	Slide Number 14
	Slide Number 15
	Slide Number 16
	The DAG Approach is not a silver bullet
	UINTAH SCALABILITY
	Explosives Problem 1 Fluid-Structure Benchmark Example: AMR MPMICE
	Thread/MPI Scheduler (De-centralized)
	Slide Number 21
	New Hybrid Model Memory Savings: Ghost Cells
	Task prioritization algorithms
	Granularity Effect
	Nodal Performance and Global ScalbilityScalability on Titan
	Lock-Free Data Structures
	Slide Number 27
	Weak Scaling AMR+MPM ICE M = Mira, T=Titan, S=Stampede
	Slide Number 29
	Slide Number 30
	MPM AMR ICE Strong Scaling
	Summary of Scalability Improvements
	An Exascale Design Problem - Alstom Clean Coal Boilers
	Existing Simulations of Boilers using ARCHES in Uintah
	Slide Number 35
	Slide Number 36
	NEBO/Wasatch Example
	Slide Number 38
	GPU Task and Data Management
	Wasatch – Nebo Recent Milestones
	DESIGNING FOR EXASCALE
	NVIDIA AMGX Linear Solvers on GPUs
	DESIGNING FOR EXASCALE
	Evaluate Performance Impact of Array Layout [Edwards and Sunderland]
	Slide Number 45
	Resilience
	Summary
	Slide Number 48
	Weak and Strong Scalability: Problem size n on p cores takes time T(n,p)
	Today’s machines�used in this talk
	GPU Task Management
	Memory Savings
	Slide Number 53

